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1 INTRODUCTION
Gene products such as proteins or RNA are created from the inheritable informa-
tion contained in a gene (Hunter and Holm, 1992). Traditional molecular biology
focuses on studying individual genes in isolation for determining gene functions.
However, it is not suitable for determining complex gene interactions or for
explaining the nature of complex biological processes due to the large number
of genes. For this purpose, examining the expression pattern of a large number
of genes in parallel is required (Michaelset al., 1998). With the advancement of
large-scale transcription profiling technology, DNA microarrays have become a
useful tool that allows the analysis of the gene expression pattern at the genome
level (Greshamet al., 2008). In genetic-mapping studies, DNA microarrays have
been widely used on polymorphisms between parental genotypes and have facili-
tated the discovery of gene expression markers (Greshamet al., 2008; Wanget al.,
2009). Due to its importance, efficient algorithms are necessary to analyze the
DNA microarray data set accurately (Hasan, 2013). Studies have showed that a
group of genes with similar gene expressions are likely to have related gene
functions (Mount, 2004). Therefore, how to find the genes that share similar
expression patterns across samples is an important question that is frequently asked
in the DNA microarray studies (Qin et al., 2014).

Clustering, which is a useful technique to constitute unknown groupings of
objects (Kaufman and Rousseeuw, 2009), has become an important part of gene
expression data analysis (Qin et al., 2014; Eisenet al., 1998). By investigating
the clusters of genes having similar expression patterns across samples, researchers
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can elucidate gene functions, genetic pathways, and regulatory circuits. Clustering
helps to find a distinct pattern for each cluster, as well as more information about
functional similarities and gene interactions within the cluster (Hasan and Duan,
2014). For clustering DNA microarray data, a good number of algorithms have
been developed that includek-means (Tavazoieet al., 1999), hierarchical cluster-
ing (Eisenet al., 1998; Luoet al., 2003; Wenet al., 1998), self-organizing maps
(Tamayo et al., 1999; T•or•onen et al., 1999; Heet al., 2003), support vector
machines (Brown et al., 2000), Bayesian networks (Friedmanet al., 2000), and
fuzzy logic approach (Woolf and Wang, 2000). In addition to these algorithms,
there are others that use genomic information, along with gene expression data,
to improve clustering efficiency. Algorithms that fall into this category include
an ontology-driven clustering algorithm (Wang et al., 2005) and the ones that
use information about TS2 upstream regions of the coding sequences and gene
expression profiles to get more biologically relevant clusters (Holmes and
Bruno, 2000; Barash and Friedman, 2002; Kasturi et al., 2003).

Among the existing clustering algorithms,k-means and hierarchical clustering
algorithms are the most commonly used.k-means is computationally faster than
hierarchical clustering and produces tighter clusters than the hierarchical clustering
algorithm. On the other hand, the hierarchical clustering algorithm computes a
complete hierarchy of clusters and hence is more informative than k-means.
Despite these advantages, both of these algorithms suffer from some limitations.
The performance ofk-means clustering depends on how effectively the initial num-
ber of clusters (i.e., the value ofk) is determined, and the advantage of hierarchical
clustering comes at the cost of low efficiency. Moreover, being computationally
expensive, both of these algorithms impede the wide use of these algorithms in
gene expression data analysis (Garai and Chaudhuri, 2004; Ushizawaet al.,
2004; Bolshakovaet al., 2005). As a solution to this problem, a combined approach
was proposed byChenet al. (2005), who first applied thek-means algorithm to
determine thek clusters and then fed these clusters into the hierarchical clustering
technique to shorten the merging cluster time and generate atreelike dendrogram.
However, this solution still suffers from the limitation ofdetermining the initial
value fork (Hasan, 2013; Hasan and Duan, 2014).

In this chapter, we propose a new algorithm, hierarchicalk-means, that com-
bines the advantages of bothk-means and the hierarchical clustering algorithm
to overcome their limitations. Combining different algorithms to overcome their
own limitations and produce better results is a popular approach in research
(Cheet al., 2011, 2012; Hasanet al., 2012). In this proposed algorithm, initially
we applied the hierarchical clustering algorithm and then used the result to decide
the initial number of clusters and fed this information intok-means clustering to
obtain the final clusters. Since similar gene expression profiles indicate similarity
in their gene functionalities (Azuaje and Dopazo, 2005), after applying the
proposed algorithm to the microarray data set of lung adenocarcinoma using gene
ontology (GO) annotations, we explored the change in the enrichment of molecular
functionalities of the genes of each cluster for normal tissue andKRAS-positive
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tissues. Our results showed that in each cluster, genes weregrouped together based
on their expression pattern and molecular functions, whichindicate the correctness
of this proposed algorithm.

2 METHODS
k-means clustering algorithm: For clustering genes,k-means clustering, a well-
known method for cluster analysis partition expression levels ofn genes intok clus-
ters, so that the total distance between the cluster's genes and its corresponding cen-
troid, representative of the cluster, is minimized. In short, the goal is to partition then
genes intok setsSi, i  1, 2¼ , k in order to minimize the within-cluster sum of
squares (WCSS), defined as

WCSS 
 k

j 1

 n

i 1
!!xj

i " cj !!
2, (4.1)

where!!xj
i " cj !!

2 provides the distance between a gene and the cluster's centroid.
In this clustering algorithm, the initial cluster centroids are selected randomly.

After that, each gene is assigned to the closest cluster centroid. Then each cluster
centroid is moved to the mean of the points assigned to it. This algorithm converges
when the assignments no longer change.Algorithm 4.1shows the pseudocode of the
k-means clustering algorithm.

Hierarchical clustering algorithm: In gene clustering, hierarchical clustering is
a method of cluster analysis that builds a hierarchy of clusters (as its name indicates).
This clustering method organizes genes into tree structures based on their relation.
The basic idea is to assemble a set of genes into a tree, where genes are joined by very
short branches if they have very great similarity to each other, and by increasingly
long branches as their similarity decreases.

The approaches for hierarchical clustering can be classified into two groups:
agglomerative and divisive. The agglomerative approach is a ªbottom-upº approach,
where each gene starts in its own cluster and pairs of clusters are merged as one
moves up the hierarchy. On the other hand, divisive approach is a ªtop-downº
approach, where all genes starts in one cluster and splits are performed recursively
as one moves down the hierarchy. In this chapter, we mainly focus on the agglom-
erative approach for hierarchical clustering.

The first step in hierarchical clustering is to calculate the distance matrix between
the genes in the data set. The clustering starts once this matrix of distances is com-
puted. The agglomerative hierarchical clustering technique consists of repeated
cycles where the two closest genes having the smallest distance are joined by a node
known as apseudonode.The two joined genes are removed from the list of genes
being processed and replaced by the pseudonode that represents the new branch.
The distances between this pseudonode and all other remaining genes are computed,
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ALGORITHM 4.1

k-means
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and the process is repeated until only one node remains. Note that there are a variety
of ways to compute distances while dealing with a pseudonode: centroid linkage,
single linkage, complete linkage, and average linkage. In this chapter, we use aver-
age linkage, which defines the distance between two clusters as the average pairwise
distance between genes in clusterCi andCj calculated using Eq.(4.2):

• Ci , Cj
! "

 

 
x#Ci

 
y#Cj

• x, y$ %

ni :nj
, (4.2)

where•(x,y) is typically given by the Euclidean distance calculated using Eq.(4.3):

• x, y$ %  

#########################
 d

i 1

xi " yi$ %2

$%
%
& : (4.3)

The pseudocode of agglomerative hierarchical clustering using average linkage is
illustrated inAlgorithm 4.2.

ALGORITHM 4.2

Hierarchical Clustering
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Hierarchical k-means: In this proposed algorithm, we selected the value ofk
(i.e., the number of clusters) in a systematic way. Initially, we used the agglomerative
hierarchical clustering algorithm for clustering the data set using average linkage and
then checked at what level the distance between two consecutive nodes of the hier-
archy was the maximum. Using this information, the value ofk is determined, which
is then fed into thek-means clustering algorithm to produce the final clusters. In both
algorithms, the Pearson correlation coefficient (r) was used as the similarity metric
between two samples and 1" r was used as the distance metric.Algorithm 4.3shows
the pseudocode of the proposed algorithm.

ALGORITHM 4.3

Hierarchicalk-means Clustering
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3 DATA SET
Lung adenocarcinoma, the most frequent type of non-small-cell lung cancer
(NSCLC) accounts for more than 50% of NSCLC, and the percentage is increasing
(Okayamaet al., 2012). Recent studies revealed that activation of theEGFR, KRAS,
and ALK genes defines three different pathways that are responsible for a con-
siderable fraction (30%±60%) of lung adenocarcinomas (Pao and Girard, 2011;
Ihle et al., 2012; Janku et al., 2010; Bronteet al., 2010; Gerber and Minna,
2010). The data set used in this research contains expression profiles for 246 samples,
of which 20 samples belonged to normal lung tissue. Out of the remaining 226 lung
adenocarcinoma samples, 127 were withEGFRmutation, 20 withKRASmutation,
11 with EML4-ALKfusion, and 68 with triple negative cases. The platform used for
this data set was GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133
Plus 2.0 Array. This data set was collected from the GEO database (accession
number GSE31210). The data set contained 54,675 genes. In this study, we consid-
ered 40 samples consisting of 20 samples from normal tissues and 20 samples from
KRAS-positive tissues.

To determine the differentially expressed genes, we performed paired student
t-test (Hsu and Lachenbruch, 2008) and Bonferroni corrections (Bonferroni,
1936), followed by the calculation of the value of fold change of the genes. In this
study, after performing Bonferroni correction, we selected the genes as the most
differentially expressed ones, which have adjusted p-values& 0.05. In addition,
we considered only those genes where the value of fold change (increase or decrease)
is significant; i.e., the average fold change between cancer and normal is' 2. Besides
this preprocessing, we considered only those genes that are associated with molec-
ular functions according to Gene Ontology (GO).

After performing the t-test, we obtained21,880geneshavingsignificantp-values (&
0.05). We performed Bonferroni correction on these genes and found 1988 genes that
had a significantly adjusted p-value (& 0.05). Adding the fold change criterion, we
reduced the set of differentially expressed genes to 1005. We then performed another
step of filtering to keep only those genes that have GO terms and responsible for molec-
ular functions. Finally, we came up with 464 genes in the final data set. The final data set
is given partially inTable 4.1, and the complete data set is available inhttp://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210(Accessed 06/18/2013).

4 RESULTS AND DISCUSSION
The result of hierarchical clustering for normal tissue data set is shown inFigure 4.1.
There are 463 interior nodes in the tree where each node is labeled based on the
increasing order of its height. Therefore, the ID for the root is 463. To determine the
number of clusters from the output of hierarchical clustering, we used a bar graph to
show the difference of height between two consecutive interior nodes (seeFigure 4.2).
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Table 4.1 A Brief Overview of the Final data set

Affymatrix ID Gene Symbol

Samples

GSM 773551 ¼ GSM 773784

1555579_s_at PTPRM 3441.22 ¼ 3569.13
211986_at AHNAK 4395.68 ¼ 7080.40
222392_x_at PERP 21707.73 ¼ 11350.53
236715_x_at UACA 1303.01 ¼ 1867.76
244704_at NFYB 124.08 ¼ 277.49
¼ ¼ ¼ ¼ ¼
211237_s_at FGFR4 22.41 ¼ 11.07
203980_at FABP4 257.25 ¼ 920.44
207302_at SGCG 47.09 ¼ 9.61
210081_at AGER 241.63 ¼ 2001.28
217046_s_at AGER 132.42 ¼ 1016.05
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FIGURE 4.1

Hierarchical clustering of the normal tissue data set.
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FIGURE 4.2

Height difference between two consecutive interior nodes in the hierarchical tree generated
from the normal tissue. Since Pearson distance is used, the maximum height of the tree is 1.



FromFigure 4.2, we can see that the difference is the maximum for nodes 461 and
462. As there is a total of 463 nodes in the tree, node 461 is on level 3 from the top.
So, according to the proposed algorithm, the total number of clusters fork-means
clustering should be 4.

Similarly, the number of clusters for theKRAS-positive data set can also be deter-
mined.Figure 4.3shows the hierarchical clustering ofKRAS-positive data set, and
Figure 4.4shows the height difference between two consecutive nodes. The results
indicate that the number of clusters forKRAS-positive data set should be 4.

After determining the value for the initial number of clusters (k), we passed the
value tok-means algorithms, andk numbers of clusters were formed for both normal
and KRAS-positive tissues. We explored their common features (genes) and
explained the change of molecular function of the genes captured in the clusters
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FIGURE 4.3

Hierarchical clustering of the KRAS positive data set.
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FIGURE 4.4

Height difference between two consecutive nodes in the hierarchical tree generated from a
KRAS-positive data set.
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of both normal tissue andKRAS-positive tissue using GO annotations. For comparing
the molecular function of the clusters of normal tissue andKRAS-positive tissues, we
took one cluster from the normal tissue data set and one from theKRAS-positive data
set that have the maximum number of common genes.Table 4.2shows the clusters
that we selected for comparing their molecular functions with the number of genes
they have in common.

We explored the molecular functions of the genes in each cluster using GO anno-
tations. Relationships among the genes were represented using a directed acyclic
graph (DAG), termed theGO graph.We used a web-based tool called theGene
Ontology Enrichment Analysis Software Toolkit (GOEAST)(Zheng and Wang,
2008) to generate these graphs. This graph displays enriched Gene Ontology IDs
(GOIDs) and their hierarchical relationships in molecular function GO categories.
Figures 4.5and4.6 show the GO graph for cluster 1 for normal tissue andKRAS-
positive tissue data set, respectively.

In Figures 4.5and4.6, boxes represent GO terms, each labeled by its GOID and
term definition. Note that significantly enriched GO terms are shaded yellow. The
degree of color saturation of each node is positively correlated with the significance
of enrichment of the corresponding GO term. Nonsignificant GO terms within the
hierarchical tree are shown as white boxes. In both of these graphs, edges stand
for connections between different GO terms. Edges colored in red stand for the rela-
tionship between two enriched GO terms, black solid edges stand for the relationship
between enriched and unenriched terms, and black dashed edges stand for the rela-
tionship between two unenriched GO terms.

In brief, these two figures show that the significant GO terms GO: 0005488 (bind-
ing) and GO: 0005515 (protein binding) remain the same in both clusters. GO terms
such as GO: 0030234 (Enzyme Regulator Activity), GO: 0019207 (Kinase Regulator
Activity), GO: 0019210 (Kinase Inhibitor Activity), GO: 0019887 (Protein Kinase
Regulator Activity), and GO: 0004860 (Protein Kinase Inhibitor Activity), which
are unenriched in normal tissue, become highly enriched in theKRAS-positive tis-
sues, indicating that our proposed algorithm can cluster representative genes of both
data sets correctly.

To compare the enrichment status of the two clusters better, we used Multi-
GOEAST, which is an advanced version of GOEAST, and it is helpful to identify

Table 4.2 List of the Clusters to Be Compared for the Alteration in Molecular
Function

Clusters to Compare

Number of Genes in CommonNormal Tissue KRAS-Positive

Cluster 1 Cluster 1 20
Cluster 2 Cluster 3 52
Cluster 3 Cluster 4 46
Cluster 4 Cluster 2 69
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the hidden correlation between the two clusters (Zheng and Wang, 2008). Figure 4.7
shows the comparative GO graph for cluster 1 of both data sets.

In the comparative GO graph, significantly enriched GO terms in both clusters
are marked yellow, and light yellow color indicates the GO terms that are enriched
in both clusters. Nodes marked with coral pink indicate the GO terms that are
enriched in the normal tissue data set but not in theKRAS-positive data set. In addi-
tion, green nodes represent the GO terms that are unenriched in normal tissue but
enriched inKRAS-positive tissue. Note that the degree of color saturation of each
node is positively correlated with the significance of enrichment of the correspond-
ing GO term.

Table 4.3lists the genes associated with the GO terms that are enriched in cluster
1 of theKRAS-positive tissue data set, but not in cluster 1 of the normal tissue data
set. These GO terms are marked green in the comparative GO graph shown in
Figure 4.7. We believe that these are responsible for the alteration of the molecular
activity in the cell and are linked to the development of KRAS lung cancer. Similarly,
we can generate and compare the GO enrichment graph for the rest of the clusters
(see supplementary materials).

GO:0003674
molecular_function

GO:0005488
binding

GO:0005515
protein binding
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enzyme inhibitor activity

GO:0019210
kinase inhibitor activity
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protein kinase A binding
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protein kinase inhibitor
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FIGURE 4.6

GO graph for cluster 1 of theKRAS-positive tissue data set.
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5 CONCLUSIONS
In this chapter, we propose hierarchicalk-means, a new combined clustering algo-
rithm designed to cluster genes in a microarray data set based on their expression
levels. In this algorithm, using the output from hierarchical clustering, we system-
atically determined the value ofk required fork-means clustering. This way, the pro-
posed algorithm overcomes the limitation ofk-means clustering. This proposed
algorithm takes advantage of the ability of hierarchical clustering to get a complete

Table 4.3 GO Terms and Pathways That Are Enriched in Molecular Functions of
the Genes of Cluster 1 ofKRAS-Positive Tissue but Unenriched in the Genes
of Cluster 1 of Normal Tissue Data Set

GO ID GO Term
Associated
Genes Pathway

GO:0030234 Enzyme
regulator activity

TIMP3 1 Matrix_metalloproteinases
CDKN1C G1_to_S_cell_cycle_reactome
PAK1 Integrin

mediated_cell_adhesion_KEGG
ECT2 N/A
RALGPS2 N/A
SFN Calcium_regulation_in_cardiac_cells

Smooth_muscle_contraction
GO:0019207 Kinase regulator

activity
CDKN1C G1_to_S_cell_cycle_reactome
SFN Calcium_regulation_in_cardiac_cells

Smooth_muscle_contraction
GO:0004857 Enzyme inhibitor

activity
TIMP3 Matrix_metalloproteinases
CDKN1C G1_to_S_cell_cycle_reactome
SFN Calcium_regulation_in_cardiac_cells

Smooth_muscle_contraction
GO:0019887 Protein kinase

regulator activity
CDKN1C G1_to_S_cell_cycle_reactome
SFN Calcium_regulation_in_cardiac_cells

Smooth_muscle_contraction
GO:0019210 Kinase inhibitor

activity
CDKN1C G1_to_S_cell_cycle_reactome
SFN Calcium_regulation_in_cardiac_cells

Smooth_muscle_contraction
GO:0004860 Protein kinase

inhibitor activity
CDKN1C G1_to_S_cell_cycle_reactome
SFN Calcium_regulation_in_cardiac_cells

Smooth_muscle_contraction
GO:0051018 Protein kinase A

binding
AKAP12 G_protein_signaling

GO:0008179 Adenylate
Cyclase binding

AKAP12 G_protein_signaling
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hierarchy of clusters and uses this information ink-means clustering to produce tigh-
ter clusters.

In this study, we examined 40 samples and 464 genes from the data set of lung
adenocarcinoma, which is one of the most frequent types of NSCLC. Out of the 40
samples, 20 were from normal tissue and 20 were fromKRAS-positive tissue. We
applied t-test, Bonferroni correction, and fold change cutoff techniques to find the
significantly differentially expressed genes, and among them, only the genes having
GO terms and responsible for molecular functions were included in the final data set.

After applying the proposed clustering algorithms, we obtained four clusters for
both the normal tissue data set andKRAS-positive data set. Hereafter, we examined
the genes contained in each cluster with respect to their molecular functions based on
GO annotation to see what changes in the enrichment of the molecular functions of
genes took place from normal tissues toKRAS-positive tissues. This way, after
checking the change in enrichment of the GO terms, we verified that the proposed
algorithm can cluster representative genes of both data sets based on their expression
patterns. The coherent approach presented in this chapter shows its correctness to
cluster genes, and we believe that it can be generalized for clustering other types
of large data sets as well.
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SUPPLEMENTARY MATERIALS
List of genes of the clusters and detailed results from GO enrichment analysis are
presented in the supplementary figures which can be found at http://www.cs.
uakron.edu/~duan/Chapter04/SupplementaryMaterials.pdf.
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